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Introduction

Disclaimer

No pursuit of completeness [Nen+15]
Focus on

Basic ideas and principles
Principles
Evaluation
Open questions and challenges

Guidelines

Question? Just ask!
Comment? Go for it!
Be kind :)
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Let’s Go!
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Linked Data Principles
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Why Link Discovery?

1 Linked Open Data Cloud
130+ billion triples
¥ 0.5 billion links
Mostly owl:sameAs

2 Decentralized dataset creation
3 Complex information needs ∆ Need

to consume data across knowledge
bases

4 Links are central for
Cross-ontology QA
Data Integration
Reasoning
Federated Queries
...
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Cross-Ontology QA

Example

Give me the name and description of all drugs that cure their side-e�ect. [SNA13]

1 Need information from
Drugbank (Drug description)
Sider (Side-e�ects)
DBpedia (Description)

2 Gathering information via SPARQL query using links
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Cross-Ontology QA

Example

Give me the name and description of all drugs that cure their side-e�ect.

SELECT ?drug ?name ?desc WHERE
{

?drug a drugbank:Drug .
?drug rdfs:label ?name .
?drug drugbank:cures ?disease .
?drug owl:sameAs ?drug2 .
?drug owl:sameAs ?drug3 .
?drug2 sider:hasSideEffect ?effect .
?effect owl:sameAs ?disease .
?drug3 dbo:hasWikiPage ?desc .

}
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Cross-Ontology QA

Example (DEQA)

Give me flats near kindergartens in Kobe. [Leh+12]

SELECT ?flat WHERE
{

?flat a deqa:Flat .
?flat deqa:near ?school .
?school a lgdo:School .
?school lgdo:city lgdo:Kobe .

}
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Data Integration
Federated Queries on Patient Data [Kha+14]
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Federated Queries

Example (FedBench CD2)

Return Barack Obama’s party membership and news pages. [Sal+15]

SELECT ?party ?page WHERE
{

dbr:Barack_Obama dbo:party ?party .
?x nytimes:topicPage ?page .
?x owl:sameAs dbr:Barack_Obama .

}

Mohamed Ahmed Sherif et al. (InfAI & FORTH) LD Tutorial:Intro May 23, 2017 10 / 24



Definition

Definition (Link Discovery, informal)

Given two knowledge bases S and T , find links of type R between S and T

Here, declarative link discovery

Definition (Declarative Link Discovery, formal, similarities)

Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : R(s, t)}
Common approach: Find M

Õ = {(s, t) œ S ◊ T : ‡(s, t) Ø ◊}

Definition (Declarative Link Discovery, formal, distances)

Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : R(s, t)}
Common approach: Find M

Õ = {(s, t) œ S ◊ T : ”(s, t) Æ ·}
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Definition

Most common: R = owl:sameAs
Also known as deduplication [Nen+15]
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Definition

Goal: Address all possible relations R
Declarative Link Discovery: Similarity/distance defined using property values (incl. property chains)

Example: R = :sameModel

:s770fm rdfs:label "S770FM"@en
:s770fm rdf:type :SABER
:s770fm :model :770
:s770fm :top :FlamedMaple
:s770fm :producer :Ibanez

:s770fm rdfs:label "S770BEM"@en
:s770fm rdf:type :SABER
:s770fm :model :770
:s770fm :top :BirdEyeMaple
:s770fm :producer :Ibanez
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Why is it di�cult?

1 Time complexity
Large number of triples (e.g., LinkedTCGA with 20.4
billion triples [Sal+14])
Quadratic a-priori runtime
69 days for mapping cities from DBpedia to Geonames
Solutions usually in-memory (insu�cient heap space)

2 Accuracy
Combination of several attributes required for
high precision
Tedious discovery of most adequate mapping
Dataset-dependent similarity functions

(trigrams(x.name, y.name), 0.50)

(levenshtein(x.desc, y.desc), 0.50)

Û

(euclidean(x.price, y.price), 0.90)

\

(cosine(x.name, y.name), 0.52)

Ù
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Structure
1 Time complexity

LIMES algorithm [NA11]
MultiBlock [IJB11]
HR3 [Ngo12]
AEGLE [GSN16]
Summary and Challenges

2 Accuracy
RAVEN [Ngo+11]
EAGLE [NL12]
COALA [NLC13]
Summary and Challenges

3 Benchmarking
Benchmarking [NGF16]
Synthetic Benchmarks [Sav+15]
Real Benchmarks [Mor+11]
Summary and Challenges

4 Hands-On Session
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That’s all Folks!
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Introduction
Link Discovery

Definition (Declarative Link Discovery)
Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : R(s, t)}
Here, find M Õ = {(s, t) œ S ◊ T : ‡(s, t) Ø ◊}

Problem
Naïve complexity œ O(S ◊ T ), i.e., O(n2)
Example: ¥ 70 days for cities in DBpedia and LinkedGeoData

Solutions
1 Reduced number of comparisons C(A) Ø |M Õ| [NA11; IJB11; Ngo12; Ngo13]
2 Use planning [Ngo14]
3 Reduce the complexity of linking to < n2 [GSN16]
4 Use features of hardware environment [Ngo+13; NH16]
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LIMES
Intuition

Definition (Declarative Link Discovery)
Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : R(s, t)}
Here, find M Õ = {(s, t) œ S ◊ T : ”(s, t) Æ ·}

Some ” are distances (in the mathematical sense) [NA11]
Examples

Levenshtein distance
Minkowski distance

Intuition
Distances abide by triangle inequality
”(x , z) ≠ ”(z , y) Æ ”(x , y) Æ ”(x , z) + ”(z , y)
Use exemplars for pessimistic approximation
Reduce number of computations
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LIMES
Approach

1 Start with random e1 œ T
2 en+1 = arg max

xœT

nq
i=1

”(x , ei)

3 Assign each t to e(t) with
e(t) = arg min

ei
”(t, ei)

4 Approximate ”(s, t) by using
”(s, t) Ø ”(s, e(t)) ≠ ”(e(t), t)
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LIMES
Evaluation

Measure = Levenshtein
Threshold = 0.9
KB base size = 103

x-axis is number of exemplars
y-axis is number of comparisons

0

2

4

6

8

10

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

Mohamed Ahmed Sherif et al. (InfAI & FORTH) LD Tutorial: Efficiency May 28, 2017 13 / 117



LIMES
Evaluation

Measure = Levenshtein
Threshold = 0.9
KB base size = 104

x-axis is number of exemplars
y-axis is number of comparisons
Optimal number of examplars
¥ |T | 0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

0.75

0.8

0.85

0.9

0.95

Brute force

Mohamed Ahmed Sherif et al. (InfAI & FORTH) LD Tutorial: Efficiency May 28, 2017 14 / 117



LIMES
Conclusion

Time-e�cent approach
Reduces number of comparisons
through approximation
No guarantee pertaining to
reduction ratio
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MultiBlock
Intuition

Idea
Create multidimensional index of data
Partition the space so that ‡(x , y) < ◊ ∆ index(x) ”= index(y)
Decrease number of computations by only comparing pairs (x , y) with index(x) = index(y)
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MultiBlock
Approach

Similarity functions are aggregations of atomic measures sim, e.g., ‡ = MIN(levenshtein, jaccard)
Each atomic measure must define a blocking function block : (S fi T ) ◊ [0, 1] æ P(Nn)
Each aggregation must define a similarity, a block and a threshold aggregation
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MultiBlock
Example

sim = levenshtein(s,t)
max(|s|,|t|) (normalized levenshtein)

block : �q æ N
Maps each q-gram to exactly one block (e.g., Goedelisation)
Only c = max(|s|, |t|)(1 ≠ ◊) · q + 1 q-grams to be indexed per string

index(s, ◊) = {block(qgrams(s[0...c])}
String mapped to several blocks
Comparison only within blocks

Comparison of drugs in DBpedia and Drugbank

Setting Comparisons Runtime Links
Full comparison 22,242,292 430s 1,403
Blocking (100 blocks) 906,314 44s 1,349
Blocking (1,000 blocks) 322,573 14s 1,287
MultiBlock 122,630 6s 1,403
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HR3

Link Discovery

Definition (Declarative Link Discovery)
Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : R(s, t)}
Here, find M Õ = {(s, t) œ S ◊ T : ”(s, t) Æ ◊}

Intuition: Reduce the number of comparisons C(A) Ø |M Õ|
Maximize reduction ratio: RR(A) = 1 ≠ C(A)

|S||T |

Question
Can we devise lossless approaches with guaranteed RR?
Advantages

Space management
Runtime prediction
Resource scheduling
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HR3

RR Guarantee

Best achievable reduction ratio: RRmax = 1 ≠ |MÕ|
|S||T |

Approach H(–) fulfills RR guarantee criterion, i�:

’r < RRmax, ÷– : RR(H(–)) Ø r

Here, we use relative reduction ratio (RRR):

RRR(A) = RRmax
RR(A)
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Goal

Formal Goal
Devise H(–) : ’r > 1, ÷– : RRR(H(–)) Æ r
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HR3

Restrictions

Minkowski Distance

”(s, t) = p

ı̂ıÙ
nÿ

i=1
|si ≠ ti |p, p Ø 2
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HR3

Space Tiling

HYPPO
”(s, t) Æ ◊ describes a hypersphere
Approximate hypersphere by using a hypercube

Easy to compute
No loss of recall (blocking)
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HR3

Space Tiling

Set width of single hypercube to � = ◊/–

Tile � = S fi T into the adjacent cubes C
Coordinates: (c1, . . . , cn) œ Nn

Contains points Ê œ � : ’i œ {1 . . . n}, ci � Æ Êi < (ci + 1)�
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HYPPO
Idea

Combine (2– + 1)n hypercubes around C(Ê) to approximate hypersphere

RRR(HYPPO(–)) = (2–+1)n

–nS(n)

lim
–æŒ

RRR(HYPPO(–)) = 2n

S(n)
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HYPPO
Reduction Ratio

RRR(HYPPO) for p = 2, n = 2, 3, 4 and
2 Æ – Æ 50

lim
–æŒ

RRR(HYPPO(–)) = 4
fi ¥ 1.27 (n = 2)

lim
–æŒ

RRR(HYPPO(–)) = 6
fi ¥ 1.91 (n = 3)

lim
–æŒ

RRR(HYPPO(–)) = 32
fi2 ¥ 3.24 (n = 4)
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HR3

Idea

index(C , Ê) =

Y
]

[

0 if ÷i : |ci ≠ c(Ê)i | Æ 1, 1 Æ i Æ n,
nq

i=1
(|ci ≠ c(Ê)i | ≠ 1)p else,
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HR3

Idea

Compare C(Ê) with C i� index(C , Ê) Æ –p

– = 4, p = 2
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HR3

Idea

Claims
No loss of recall
lim

–æŒ
RRR(HR3(–)) = 1
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HR3

Lemma 1

Lemma
index(C , s) = x ∆ ’t œ C ”p(s, t) > x�p

p = 2, n = 2, index(C , s) = 5
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HR3

Lemma 1

Lemma
index(C , s) = x ∆ ’t œ C ”p(s, t) > x�p

Proof.

index(C , s) = x ∆
nq

i=1
(|ci ≠ ci(s)| ≠ 1)p = x

Out of definition of cube index follows |si ≠ ti | > (|ci ≠ ci(s)| ≠ 1)�

Thus,
nq

i=1
|si ≠ ti |p >

nq
i=1

(|ci ≠ ci(s)| ≠ 1)p�p

Therewith, ”p(s, t) > x�p
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HR3

Lemma 2

Lemma

’s œ S : index(C , s) > –p implies that all t œ C are non-matches

Proof.
Follows directly from Lemma 1:
index(C , s) > –p ∆ ’t œ C , ”p(s, t) > �p–p = ◊p
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HR3

Idea

Claims

No loss of recallX
lim

–æŒ
RRR(HR3(–)) = 1
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HR3

Lemma 3

Lemma
’– > 1 RRR(HR3(2–)) < RRR(HR3(–))

p = 2, – = 4
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HR3

Proof (idea)

Lemma

’– > 1 RRR(HR3(2–)) < RRR(HR3(–))

p = 2, – = 8
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HR3

Proof

Lemma
’– > 1 RRR(HR3(2–)) < RRR(HR3(–))

p = 2, – = 25
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HR3

Proof

Lemma
’– > 1 RRR(HR3(2–)) < RRR(HR3(–))

p = 2, – = 50
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HR3

Theorem

Theorem

lim
–æŒ

RRR(HR3(–)) = 1

Proof.
– æ Œ ∆ � æ 0
Thus, C(s) = {s}, C = {t}
Index function :

nq
i=1

�p(|ci(s) ≠ ci | ≠ 1)p Æ �p–p

� æ 0 ∆
nq

i=1
|si ≠ ti |p Æ ◊p
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HR3

Idea

Claims

No loss of recall X
lim

–æŒ
RRR(HR3(–)) = 1X
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HR3

Evaluation

Compare HR3 with LIMES 0.5’s HYPPO and SILK 2.5.1
Experimental Setup:

Deduplicating DBpedia places by minimum elevation, elevation and maximum elevation
(◊ = 49m, 99m).
Geonames and LinkedGeoData by longitude and latitude (◊ = 1¶, 9¶)

Windows 7 Enterprise machine 64-bit computer with a 2.8GHz i7 processor with 8GB RAM.
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HR3

Evaluation (Comparisons)

Experiment 2: Deduplicating DBpedia places, ◊ = 99m
0.64 ◊ 106 less comparisons
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HR3

Experiments (Comparisons)

Experiment 4: Linking Geonames and LinkedGedData, ◊ = 9¶

4.3 ◊ 106 less comparisons
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HR3

Experiments (RRR)

Experiment 3,4: Geonames and LGD, ◊ = 1, 9¶
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HR3

Experiments (Runtime)

Experiment 3,4: Geonames and LGD, ◊ = 1, 9¶
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HR3

Experiments (Runtime)

Experiment 1, 2: DBpedia, ◊ = 49, 99m
Experiment 3, 4: Geonames and LGD, ◊ = 1, 9¶
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HR3

Conclusion

Main result: new category of algorithms for link discovery
Outperforms the state of the art (runtime, comparisons)
Future Work

Combine HR3 with multi-indexing approach
Devise resource management approach
Develop other algorithms (esp. for strings) with the same/similar theoretical guarantees
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AEGLE
Why?

:E1 rdfs:label "Engine failure"@en

:E1 rdf:type :Error

:E1 :beginDate :"2016-04-22T11:39:35"

:E1 :endDate :"2015-04-22T11:39:37"

:E2 rdfs:label "Car accident"@en

:E2 rdf:type :Accident

:E2 :beginDate :"2015-06-28T11:45:22"

:E2 :endDate :"2015-06-28T11:45:24"

Need to create links between events, e.g., :startsEvent

Need to deal with volume and velocity
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AEGLE
Event Definition

Definition (Event)
Events can be modeled as time intervals: v = (b(v), e(v))

b(v) is the beginning time (:beginDate)
e(v) is the end time (:endDate)
b(v) < e(v)
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AEGLE
Allen’s Interval Algebra

Relation Notation Inverse Illustration

X before Y bf (X , Y ) bfi(X , Y )

X
Y

X meets Y m(X , Y ) mi(X , Y )

X
Y

X finishes Y f (X , Y ) fi(X , Y )

X
Y

X starts Y st(X , Y ) sti(X , Y )

X
Y

X during Y d(X , Y ) di(X , Y )

X
Y

X equal Y eq(X , Y ) eq(X , Y )

X
Y

X overlaps with Y ov(X , Y ) ovi(X , Y )

X
Y
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AEGLE
Solution

Aegle: Allen’s intErval alGebra for Link discovEry
E�cient computation of temporal relations
between events
Allen’s Interval Algebra: distinct, exhaustive,
and qualitative relations between time intervals
Intuition

Expressing 13 Allen relations using 8 atomic
relations
Time is ordered: Find matching entities using
two sorted lists
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AEGLE
Express st(s, t) using atomic relations

s

t
b(s) = b(t)
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AEGLE
Atomic relations

Compute 8 atomic Boolean relations between begin and end points
BeginBegin (BB) for b(s), b(t):

BB1(s, t) … (b(s) < b(t))
BB0(s, t) … (b(s) = b(t))
BB≠1(s, t) … (b(s) > b(t)) … ¬(BB1(s, t) ‚ BB0(s, t))

BeginEnd(BE) for b(s), e(t)
EndBegin(EB) for e(s), b(t)
EndEnd(EE) for e(s), e(t)
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AEGLE
Combination of relations

s

t
st(s, t) … BB0(s, t) · BE 1(s, t) · EB≠1(s, t) · EE 1(s, t) … {BB0(s, t) · EE 1(s, t) }

t

s
sti(s, t) … BB0(s, t) · BE 1(s, t) · EB≠1(s, t) · EE≠1(s, t) …

{BB0(s, t) · EE≠1(s, t)} =
{ BB0(s, t) ·¬(EE 0(s, t)‚ EE 1(s, t))}
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AEGLE
Algorithm for st, sti

Source

s1

s2

Target
t1

t2

For st:

Compute BB0:
s1 s2 t1 t2

{(s1, t1), (s2, t1)}

Compute EE 1:
{(s1, t1), (s2, t1), (s1, t2)}

Intersection between BB0 and EE 1: {(s1, t1), (s2, t1)}
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AEGLE
Algorithm for st, sti

Source

s1

s2

Target
t1

t2

For sti :

Retrieve BB0 and EE 1:

Compute EE 0:

s1 s2 t1 t2

{(s2, t2)}

Union between EE 0 and EE 1: {(s1, t1), (s2, t1),
(s2, t1), (s2, t2)}

Di�erence between BB0 and EE 0, EE 1: {(s1, t2), (s2, t2)}
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Union between EE 0 and EE 1: {(s1, t1), (s2, t1),
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AEGLE
Experimental Set-Up

Datasets: S = T
Log Type Dataset name Size Unique b(s) Unique e(s)

Machinery
3KMachines 3,154 960 960
30KMachines 28,869 960 960
300KMachines 288,690 960 960

Query
3KQueries 3,888 3,636 3,638
30KQueries 30,635 3,070 3,070
300KQueries 303,991 184 184

State-of-the-art:
Silk extended to deal with spatio-temporal data
Baseline for eq using brute-force

Evaluation measures:
atomic runtime of each of the atomic relations
relation runtime required to compute each Allen’s relation
total runtime required to compute all 13 relations
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AEGLE
Results

Q1: Does the reduction of Allen
relations to 8 atomic relations
influence the overall runtime of the
approach?
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AEGLE
Results

Q2: How does Aegle perform when compared with the state of the art in terms of time e�ciency?

Log Type Dataset Name Total Runtime
Aegle Aegle * Silk

Machine
3KMachines 11.26 5.51 294.00

30KMachines 1,016.21 437.79 29,846.00
300KMachines 189,442.16 78,416.61 NA

Query
3KQueries 26.94 17.91 541.00

30KQueries 988.78 463.27 33,502.00
300KQueries 211,996.88 86,884.98 NA
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AEGLE
Results

Machine Query
Relation Approach 3KMachines 30KMachines 300KMachines 3KQueries 30KQueries 300KQueries

m Aegle 0.02 0.19 3.42 0.02 0.21 3.89
Silk 23.00 2,219.00 NA 41.00 2,466.00 NA

eq
Aegle 0.05 0.79 49.84 0.05 0.45 348.51

Silk 23.00 2,250.00 NA 41.00 2,473.00 NA
baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54

ovi Aegle 3.16 222.27 38,226.32 11.97 257.59 42,121.68
Silk 22.00 2,189.00 NA 42.00 2,503.00 NA

Conclusion
Aegle = e�cient temporal linking

Reduction of 13 Allen Interval relations to 8 atomic relations
E�ciency: simple sorting with complexity O(n log n)
Scalable LD
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Radon
Motivation

Large Geo-spatial datasets
LinkedGeoData contains > 20+ billion triples
NUTS contains up to 1, 500 points per resources

Only 7.1% of the links between resources connect
geo-spatial entities (Ngonga Ngomo, 2013)
Geo-spatial resources available on the LOD

Described using polygons
Large in number
Demands the computation of topological relations

Naïve computation of topological relations is
impracticable for geo-spatial resources
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Radon
The Dimensionally Extended nine-Intersection Model (DE-9IM)

Standard to describe the topological relations in 2D space.
DE-9IM is to based on the intersection matrix:

DE9IM(a, b)
5

dim(I(g1) fl I(g2)) dim(I(g1) fl B(g2)) dim(I(g1) fl E(g2))
dim(B(g1) fl I(g2)) dim(B(g1) fl B(g2)) dim(B(g1) fl E(g2))
dim(E(g1) fl I(g2)) dim(E(g1) fl B(g2)) dim(E(g1) fl E(g2))

6

There must be at least one shared point for a relation to be hold
Except for the disjoint relation ∆ inverse of the intersects relation
Accelerating the computation of whether two geometries share at least one point, accelerates the
computation of any topological relation
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Radon
Basic Idea

Radon implements improved indexing
approach based on

1 Minimum bounding boxes (MBB)
2 Space tiling
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Radon
I. Swapping Strategy

Large geometries that span over a large number of
hypercubes ∆ large spatial index when used as S
Estimated Total Hypervolume (ETH) of a set of
geometries X

ETH(X) = |X |
dŸ

i=1

1
|X |

ÿ

xœX

3
max
pœx

{Ÿi (p)} ≠ min
pœx

{Ÿi (p)}
4

If ETH(S) > ETH(T ), swaps S and T and computes the
reverse relation r Õ instead of r
e.g. if r is covered and ETH(S) > ETH(T ), then swaps
S and T and computes coveredBy

Since ETH(NUTS) > ETH(CLC),
then S = CLC and T = NUTS
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Radon
II. Optimized Sparse Space Tiling

Insert all geometries s œ S into index I(s)
1 Computes MBB(s)
2 Maps each s to all hypercubes over MBB(s) spans

Same procedure for all t œ T but only index geometries t that are potentially in hypercubes already
contained in I(S)
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Radon
III. Link Generation

Discards unnecessary computations using the TestMBB
procedure
TestMBB optimizes the subset of DE-9IM relations for
relations where

one geometry has interior or boundary points
in the exterior of the other geometry
e.g. equals, covers and within

For other relations, TestMBB returns true
If TestMBB returns false

No need to compute the expensive computation
of the topological relation

I TestMBB(within, blue) = false
I TestMBB(within, green) = true
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Radon
Evaluation Setup

Topological relations
Subset of the 7 topological relations
i.e. within, touches, overlaps, intersects, equals,
crosses and covers

Hardware
64-core 2.3 GHz, OpenJDK 64-Bit Server
20 GB RAM with timeout limit of 2 hours

State of the art
1 Silk
2 Strabon

Datasets
1 NUTS
2 CORINE Land Cover (CLC)
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Radon
Evaluation – Linear Speedup

Radon vs. Silk
44 subsets of the CLC vs. the full NUTS
7 basic topological relations
308 experiments
Single core
Radon achieves a linear speedup relative to the
dataset sizes
Up to 450 times faster for the within relation

within relation

0 108 2×108 3×108 4×108 5×108

Dataset sizes

0

100

200

300

400

500
Sp

ee
du

p

Mohamed Ahmed Sherif et al. (InfAI & FORTH) LD Tutorial: Efficiency May 28, 2017 72 / 117



Radon
Evaluation – Topological Relations Computations

Same setting as in previous experiments
Radon runs significantly less computations of
the relations
Radon carries out only 3 and 4 computations
for the equals and within relations
respectively
On average, 449 times less computations per
relation 0 2×105 4×105 6×105 8×105

covers

crosses

equals

intersects

overlaps

touches

within

RADON
SILK

Average number of computations
of topological relations
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Radon
Evaluation – Runtime

Same setting as in previous experiments
On average, Radon is faster then

Silk by 65.62 times
Strabon by 11.99 times

Strabon outperforms Radon on the
intersects relation

Strabon uses an R-tree-over-GiST spatial
index over the stored geometries in the
underlying PostGIS database
R-tree-over-GiST is highly optimized for the
retrieval of spatially connected objects

0 100 200 300 400

covers

crosses

equals

intersects

overlaps

touches

within

RADON
STRABON
SILK

Average runtimes in seconds
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Radon
Evaluation – Speedup Quantification (Parallel Implementation)

Merge all 44 sub-datasets of CLC (CLCM)
CLCM contains 2, 209, 538 resource
CLCM as both source and target datasets
Simple round robin load balancing policy
On average, within the 2 hours time limit

Radon finishes in 20.83 minutes
Silk finalizes 1.16% of the tasks
Silk would need 4.36 days with 8 threads
(linear extrapolation)
Radon is 834.69 times faster than Silk

Relation #Thr. Radon Silk Speedup

equals

1 24.11 36,500 (0.33%) 1,513.58
2 13.15 21,667 (0.55%) 1,647.58
4 6.81 11,750 (1.02%) 1,725.77
8 3.79 6,286 (1.91%) 1,658.78

intersects

1 93.17 37,500 (0.32%) 402.50
2 49.03 20,667 (0.58%) 421.53
4 25.11 12,000 (1.00%) 477.81
8 13.04 6,300 (1.90%) 483.24

within

1 36.47 35,000 (0.34%) 959.74
2 18.26 20,667 (0.58%) 1,131.86
4 9.44 11,765 (1.02%) 1,246.34
8 5.92 6,202 (1.93%) 1,048.34

covers

1 35.62 36,000 (0.33%) 1,010.75
2 18.51 21,029 (0.57%) 1,136.10
4 10.23 12,000 (1.00%) 1,172.50
8 5.33 6,300 (1.90%) 1,182.13

touches

1 94.50 35,500 (0.34%) 375.68
2 47.71 22,196 (0.54%) 465.18
4 25.09 12,121 (0.99%) 483.08
8 13.30 6,381 (1.88%) 479.75
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Radon
Evaluation – Speedup Quantification (Parallel Implementation)

Strabon does not finish any of the
experiments within the 2-hours time limit
No progress feedback from Strabon
Strabon performance estimation

Strabon vs. sub-CLC dataset
10 times < CLCm
Optimistic (Strabon scales linearly),
average speedup of 24
Realistic (Strabon scales in O(n2)), average
speedup of 241
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Radon
Conclusion & Future Work

Conclusion
Presented Radon, an approach for rapid discovery of topological
relations among geo-spatial resources
Sparse index combines space tiling and MBB approximation
Radon is complete and correct
Outperforms the SOTA by up to 3 orders of magnitude

Future work
More sophisticated load balancing approaches
Other topology approximation methods
Topological relations in higher dimensions
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Gnome
Problem

What if ...
Data does not fit memory C , i.e.,
|S| + |T | > |C |

1 Common problem
2 Growing size and number of datasets

¥ 150 ◊ 109 triples
¥ 10 ◊ 103 datasets
Largest dataset with > 20 ◊ 109triples

3 Mostly in-memory solutions
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Gnome
Idea

Insight
Most approaches rely on divide-and-merge paradigm
Example: HR3

‡(s, t) Ø ◊ … ”(s, t) Æ �
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Gnome
Formal Model

1 Define S = {S1, . . . , Sn} with Si ™ S · t
i

Si = S

2 Define T = {T1, . . . , Sm} with Tj ™ T · t
j

Tj = T

3 Find mapping function µ : S æ 2T with
elements of Si only compared with elements of sets in µ(Si )
union of results over all Si œ S is exactly MÕ.
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GNOME
Task Graph

Definition
A task Eij stands for comparing Si with Tj œ µ(Si)

Task Graph G = (V , E , wv , we), with
V = S fi T
wv (v) = |V |
we(eij) = |Si ||Tj |

S1

3
T1

2
S2

2

T2

1

S3

4

T3

36

3

4

2

4
12
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GNOME
Problem Reformulation

Locality maximization
Two-step approach:

1 Clustering: Find groups of nodes that fit in memory and
2 Scheduling: Compute sequence of groups that minimizes hard drive access
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GNOME
Step1: Clustering

Naïve Approach
Cluster by Si

Example: |C | = 7
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GNOME
Step1: Clustering

Greedy Approach
Start by largest task
Add connected largest tasks until none fits in C

Example: |C | = 7
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GNOME
Step2: Scheduling

Insights
Output of clustering: Sequence G1, . . . , GN of clusters
Intuition: Consecutive clusters should share data
Goal: Maximize overlap of generated sequence

Overlap o(Gi , Gj) =
q

vœV (Gi )flV (Gj )
|v |

o(G4, G1) = 4

Overlap o(G1, . . . , GN) =
N≠1q
i=1

o(Gi , Gi+1)

o(G4, G1, G2, G1) = 9
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GNOME
Step2: Scheduling

Best-E�ort
Select random pair of clusters
If permutation improves overlap, then permute
Relies on local knowledge for scalability

Trick:

�(Gi , Gj) = (o(Gi≠1, Gj) + o(Gj , Gi+1) + o(Gj≠1, Gi) + o(Gi , Gj+1))≠
(o(Gi≠1, Gi) + o(Gi , Gi+1) + o(Gj≠1, Gj) + o(Gj , Gj+1))

(1)

G3 G1 G2 G4
0 3 2 G4 G1 G2 G3

4 3 2
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GNOME
Step2: Scheduling

Greedy
Start with random cluster
Choose next cluster with largest overlap
Global knowledge needed

G3 G1 G2 G4
0 3 2 G3 G2 G1 G4

2 3 4
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GNOME
Experimental Setup

Datasets
1 DBP: 1 million labels from DBpedia version 04-2015
2 LGD: 0.8 million places from LinkedGeoData

Hardware
1 Intel Xeon E5-2650 v3 processors (2.30GHz)
2 Ubuntu 14.04.3 LTS
3 10GB RAM

Measures
1 Total runtime
2 Hit ratio
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GNOME
Evaluation of Clustering

Only show results of LGD
Results on DBP lead to similar
insights

Runtimes Hit Ratio
|C | Naive Greedy Naive Greedy
100 568.0 646.3 0.57 0.77
200 518.3 594.0 0.66 0.80
400 532.0 593.3 0.67 0.80

1,000 5,974.0 118,454.7 0.51 0.64
2,000 6,168.0 115,450.0 0.51 0.63
4,000 7,118.3 121,901.7 0.50 0.63

Conclusion
1 Naïve approach is more e�cient
2 Greedy approach is more e�ective
3 Select naïve approach for clustering
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GNOME
Evaluation of Scheduling

Only show results of LGD
Results on DBP lead to similar
insights

Runtimes (ms) Hit ratio
|C | Best-E�ort Greedy Best-E�ort Greedy
100 571.3 1,599.3 0.56 0.68
200 565.7 1,448.3 0.66 0.85
400 581.0 1,379.3 0.67 0.88

1,000 5,666.0 814,271.7 0.51 0.86
2,000 6,268.0 810,855.0 0.51 0.86
4,000 6,675.7 814,041.7 0.50 0.86

Conclusion
1 Best-e�ort approach more time-e�cient
2 Greedy more e�ective
3 Best-e�ort approach is to be used for scheduling
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GNOME
Comparison with Caching Approaches

Runtimes (ms)
|C | Gnome FIFO F2 LFU LRU SLRU

1,000 5,974.0 37,161.0 42,090.3 45,906.7 54,194.3 56,904.3
2,000 6,168.0 31,977.0 39,071.3 39,872.0 45,473.0 46,795.0
4,000 7,118.3 21,337.0 40,860.0 28,028.3 26,816.7 27,200.0

Hit ratio
1,000 0.51 0.17 0.16 0.19 0.17 0.17
2,000 0.51 0.29 0.30 0.32 0.30 0.30
4,000 0.51 0.54 0.55 0.59 0.55 0.56

Conclusion
1 Gnome is more time-e�cient
2 Leads to higher hit rates in most cases
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GNOME
Scalability

100k 200k 400k 800k
LGD 362,141.3 1,452,922.0 5,934,038.7 20,001,965.7
DBP 434,630.7 1,790,350.7 6,677,923.0 12,653,403.3

Conclusion
Sub-quadratic growth of runtime
Runtime grows linearly with number of mappings
For LGD, 360 – 370 mappings/s
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Reach for the Cloud?
Dealing with Time Complexity

1 Devise better algorithms

Blocking
Algorithms for given metrics

PPJoin+, EDJoin
HR3

2 Use parallel hardware

Threads pools
MapReduce
Massively Parallel Hardware
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Reach for the Cloud?
Parallel Implementations

Di�erent architectures
Memory (shared, hybrid, distributed)
Execution paths (di�erent, same)
Location (remote, local)

Question
When should which use which hardware?
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Reach for the Cloud?
Premises and Goals

Premises
Given an algorithm that runs on all three architectures ...

Note to self: Implement one
Picked HR3

Reduction-ratio-optimal

Reach for the Cloud?
Goals

Compare runtimes on all three parallel architectures
Find break-even points
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Reach for the Cloud?
HR3

1 Assume spaces with Minkowski metric and p Ø 2

”(s, t) = p

ı̂ıÙ
nÿ

i=1
|si ≠ ti |p
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Reach for the Cloud?
HR3

2 Create grid of width � = ◊/–
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Reach for the Cloud?
HR3

3 Link discovery condition describes a hypersphere
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Reach for the Cloud?
HR3

4 Approximate hypersphere with hypercube
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Reach for the Cloud?
HR3

5 Use index to discard portions of hypercube
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Reach for the Cloud?
HR3 in GPUs

Large number of simple compute cores
Same instruction, multiple data
Bottleneck: PCI Express Bus

1 Run discretization on CPU
2 Run indexing on GPU
3 Run comparisons on CPU

Local memory

Global/constant memory

Local memory Local memory Local memory

Work item

Work group

Global/constant cache
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Reach for the Cloud?
HR3 on the Cloud

Naive Approach

1 Rely on Map Reduce paradigm
2 Run discretization and assignment to cubes in map step
3 Run distance computation in reduce step
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Reach for the Cloud?
HR3 on the Cloud

Load Balancing
1 Run two jobs
2 Job1: Compute cube population matrix
3 Job2: Distribute balanced linking tasks across mappers and reducers
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Reach for the Cloud?
Evaluation Hardware

1 CPU (Java)
32-core server running Linux 10.0.4
AMD Opteron 6128 clocket at 2.0GHz

2 GPU (C++)
AMD Radeon 7870 with 20 compute units, 64 parallel threads
Host program ran on Intel Core i7 3770 CPU with 8GB RAM and
Linux 12.10
Ran the Java code on the same machine for scaling

3 Cloud (Java)
10 c1.medium nodes (2 cores, 1.7GB) for small experiments
30 c1.large nodes (8 cores, 7GB) for large experiments
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Reach for the Cloud?
Experimental Setup

Run deduplication task
Evaluate behavior on di�erent number of dimensions
Important: Scale results

Di�erent hardware (2-7 times faster C++ workstation)
Programming language

Evaluate scalability (DS4)
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Reach for the Cloud?
Results – DS1

DBpedia, 3 dimensions, 26K
GPU scales better
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Reach for the Cloud?
Results – DS2

DBpedia, 2 dimensions, 475K
GPUs scale better across di�erent ◊
Break-even point ¥ 108 results
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Reach for the Cloud?
Results – DS3

LinkedGeoData, 2 dimensions, 500K
Similar picture
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Reach for the Cloud?
Results – Scalability

LinkedGeoData, 2 dimensions, 6M
Cloud (with load balancing) better for ¥ 1010+ results
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Reach for the Cloud?
Summary

Question: When should we use which hardware for link discovery?
Results

Implemented HR3 on di�erent hardware
Provided the first implementation of link discovery on GPUs
Devised a load balancing approach for linking on the cloud
Discovered 108 and 1010 results as break-even points
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Reach for the Cloud?
Summary

Question: When should we use which hardware for link discovery?
Insights

Load balancing important for using the cloud
GPUs: Need faster buses that PCIe (e.g., Firewire speed)
Accurate use of local resources su�cient for most of the current applications
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Summary and Conclusion

Four approaches to scalability
1 Improve reduction ratio (LIMES, MultiBlock,

HYPPO, HR3, . . . )
2 Reduce runtime complexity (AEGLE,

RADON)
3 Better use of hardware (GNOME)
4 Improve execution of specifications

Challenges include
1 Increase number of reduction-ratio-optimal

approaches (HR3, ORCHID)
2 Adaptive resource scheduling
3 Self-regulating approaches
4 Distribution in modern in-memory

architecture (SPARK)
5 . . .
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Introduction

Link Discovery as Classification Task

Definition (Declarative Link Discovery)
Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : R(s, t)}
Here, find M

Õ = {(s, t) œ S ◊ T : ‡(s, t) Ø ◊}

Definition (Classification perspective)
Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : C(s, t) = +1}
Here, C(s, t) = +1 ¡ ‡(s, t) Ø ◊

Classical machine learning problem [Ngo+11; NL12]
Dedicated techniques perform better
Unsupervised, active and unsupervised techniques possible
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Introduction

Challenge

Challenges
1 Creation of labeled training data tedious
2 Need automated means for automatic class and property matching
3 Need for e�cient execution of link specifications
4 Dedicated machine learning approaches necessary

Solutions
1 Use active learning approach for link discovery
2 Rely on hospital/resident algorithm
3 See previous section
4 Topic of this section
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RAVEN

Approach

Definition (Classification perspective)
Given sets S and T of resources and relation R
Find M = {(s, t) œ S ◊ T : C(s, t) = +1}
Here, C(s, t) = +1 ¡ ‡(s, t) Ø ◊

Learning classifier C involves learning
1 Two sets of restrictions that specify the sets S resp. T,
2 the components ‡1 . . . ‡

n

of a complex similarity measure ‡
3 a set of thresholds ◊1, ..., ◊

n

for ‡1, . . . , ‡
n

Assumptions
Restrictions are class restrictions
Classifier shape is given (e.g., linear combination)
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RAVEN

Approach

Class and Property Restrictions
Define class similarity function
Solve corresponding hospital-resident problem
Based on extension of stable marriage problem
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RAVEN

Approach

Class Restrictions
Similarity function

String similarity
Number of shared property values amongst instances
. . .

Solve corresponding hospital-resident problem

Source Target S T

Drugbank Disesome Targets Genes
Sider Diseasome Side-E�ect Diseases

DBpedia Dailymed Organization Organization
Sider Dailymed Drugs O�er

Drugbank DBpedia Targets Protein
Property mapping similar
Leads to ‡1 . . . ‡

n
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RAVEN

Approach

Learning Threshold
Active perceptron learning
Begin with educated guess, e.g., ◊

i

= 0.9
Update thresholds based on most informative examples

Guess initial classifier
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RAVEN

Approach

Learning Threshold
Active perceptron learning
Begin with educated guess, e.g., ◊

i

= 0.9
Update thresholds based on most informative examples

Pick most informative examples, i.e., unclassified and closest to boundary
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RAVEN

Approach

Learning Threshold
Active perceptron learning
Begin with educated guess, e.g., ◊

i

= 0.9
Update thresholds based on most informative examples

Ask for classification from oracle
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RAVEN

Approach

Learning Threshold
Active perceptron learning
Begin with educated guess, e.g., ◊

i

= 0.9
Update thresholds based on most informative examples

Update classifier
Mohamed Ahmed Sherif et al. (InfAI & FORTH) LD Tutorial: Accuracy May 25, 2017 16 / 68



RAVEN

Evaluation

Evaluation on Diseases
(Diseasome to DBpedia)
Learning rate = 0.02
10 questions/iteration
F-measure of up to 92%

1 3 5 7 9 11 13 15 17 19 21 23 25

Number of iterations
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RAVEN

Evaluation
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Eagle
E�cient Active Learning of Link Specifications using Genetic Programming

Eagle
Provides means for automatic class and property matching
Minimizes human labeling e�ort through active learning
Allow for learning generic specs (limitation of RAVEN)
Similar approaches [NIK+12; ISE+12]
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Eagle
Formal Definition

Same formal setting as RAVEN
Two sets of restrictions resp. that specify the sets S resp. T ,
a specification of mapping properties (p1, q1), . . . , (p

n

, q

n

) for the elements of S and T and
a specification of a complex similarity measure ‡ as the combination of several atomic similarity
measures ‡1, . . . , ‡

n

and of a set of thresholds ◊1, . . . , ◊
n

such that ◊
i

is the threshold for ‡
i

.
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Eagle
LS example

Can learn generic classifier type

(levenshtein(:title, :title), 0.53)

(cosine(:venue, :year), 1.00)
\

(jaccard(:title, :authors), 0.43)

(trigrams(:title, :year), 1.00)

Ù

Û
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Eagle
Idea & Goal

Eagle
Idea: Specifications are trees
Goal: Learn elements of trees through genetic operations until best LS is found

Ù

(m4, ◊4) (m2, ◊2)

p3 q3 p2 q2
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Eagle Algorithm

Step 1: Generate initial population

Random process (property pairs, thresholds)
Compute fitness
Fitness = F-Measure w.r.t known data

(m1, ◊1)

p1 q1

(m2, ◊2)

p2 q2

(m3, ◊3)

p3 q3

Ù

(m4, ◊4) (m5, ◊5)

p3 q3 p2 q2
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Eagle Algorithm

Step 2: Evolve population

Tournament between two individuals
Two operators: Mutation and crossover

(m1, ◊1)

p1 q1

(m3, ◊3)

p2 q2

(m2, ◊2)

p3 q3

Ù

(m4, ◊4) (m5, ◊5)

p3 q3 p2 q2
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Eagle Algorithm

Step 3: Computation of most informative links

Previous approaches define amount of information of link as closeness to the decision boundary
Here, use disagreement amongst elements of population of size n

”((s, t)) = (n ≠ |Mt

i

: (s, t) œ M
i

)|)(n ≠ |Mt

i

: (s, t) /œ M
i

|)

Function is maximal when n

2 count (s, t) as positive and n

2 as negative
Can be modeled with other functions such as entropy
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Eagle Algorithm

Step 4: Active Learning

Compute ”((s, t)) for all (s, t) returned by a LS
Pick k most informative
Require labeling from user
Update list of positive and negative examples

(m1, ◊1 + –)

p1 q1

(m2, ◊2)

p3 q3

(m3, ◊3)

p2 q2

Ù

(m4, ◊4) (m2, ◊2)

p3 q3 p2 q2
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Eagle Algorithm

Step 5: Remove least fit elements

Fitness = F-Measure w.r.t known data

(m1, ◊1 + –)

p1 q1

(m2, ◊2)

p3 q3

(m3, ◊3)

p2 q2

Ù

(m4, ◊4) (m2, ◊2)

p3 q3 p2 q2

If termination conditions not met, goto Step 2
Else terminate and pick fittest LS
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Eagle Algorithm

Unsupervised learning

Measure degree of monogamy of links [NIK+12]
Only works for 1-1 relations, e.g., owl:sameAs

P(M) = |{s|÷t : (s, t) œ M}|q
s

|{t : (s, t) œ M}| ,

R(M) = |{t|÷s : (s, t) œ M}|q
t

|{s : (s, t) œ M}| ,

F—(M) = (1 + —2) P
d

(M)R
d

(M)
—2P

d

(M) + R
d

(M)

s1

s2

s3

t1

t2

t3

t4

link

link

link

link

P = 3/4, R = 2/4, F = 3/5.
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Eagle
Experiments and Results

Experimental Setup:
Compared batch learning and genetic programming
Used 3 di�erent data sets

1 Dailymed-Drugbank (LATC)
2 DBpedia-LinkedMDB (LATC)
3 DBLP-ACM

Compared di�erent sizes of population (20,100)
Compared random annotation with active learning
Mutation and crossover rates = 0.6
Maximal number of iterations = 50
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Eagle
Experiments and Results (Dailymed-Drugbank)
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Eagle
Experiments and Results (DBpedia-LinkedMDB)
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Eagle
Experiments and Results (DBLP-ACM)
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Eagle
Experiments and Results

Larger population leads to
Better results, yet
Longer runtimes

For most datasets, population size of 100 seems su�cient for most linked data sets
EAGLE is more time-e�cient than state of the art

337s for ACM-DBLP (n=100) vs.
1553s for Marlin (ADTree)
2196s for Marlin (SVM)
4320s for Febrl (SVM)

Active learning clearly outperforms random annotation
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Correlation-Aware Active Learning of Link Specifications
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Coala
Learning Complex Specifications

Supervised (mostly active, e.g., RAVEN, EAGLE, SILK)
Unsupervised (e.g., KnoFuss, EUCLID, EAGLE)
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Coala
Learning Complex Specifications

Insight
Choice of right example is key for learning
So far, only use of informativeness

Question
Can we do better by using more information?
Higher F-measure
Often slower
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Coala Approach

Basic Idea

Use similarity of link candidates when selecting most informative examples
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Coala
Similarity of Candidates

Link candidate x = (s, t) can be regarded as vector (‡1(x), . . . , ‡
n

(x)) œ [0, 1]n.
Similarity of link candidates x and y :

sim(x , y) = 1

1 +
Û

nq
i=1

(‡
i

(x) ≠ ‡
i

(y))2

. (1)

Allows exploiting both intra- and inter-class similarity
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Coala
Graph Clustering

Rationale: Use intra-class similarity
Approach

Cluster elements of S

+ and S

≠ independently
Choose one element per cluster as
representative
Present oracle with most informative
representatives 0.8

 0.9

0.8
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S-

0.8
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Coala
BorderFlow

G = (V , E , Ê) with V = S

+ or V = S

≠

Ê(x , y) = sim(x , y)
Keep best ec edges for each x œ V
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Coala
BorderFlow

Seed-based algorithm
Goal: Maximize borderflow ratio bf (X ) = �(b(X),X)

�(b(X),n(X))

http://sourceforge.net/projects/cugar-framework/
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Coala
Spreading Activation

Rationale: Use both inter- and intra-class similarity
Approach

M0 : m

ij

= sim(x
i

, x

j

) with (x
i

, x

j

) œ (S+ fi S

≠)2

A0 : a

i

= ifm(x
i

)

A
t

= A
t≠1 + M

t≠1A
t≠1 (spread activation)

A
t

= A
t

/ max(A
t

) (normalize)
M

t

= M r�
t≠1 (weight decay)
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Approach
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Coala Evaluation

Experimental Setup

Used EAGLE as active learning approach
Mutation and crossover rate = 0.6
Selection rate = 0.7
Not deterministic ∆ Ran each experiment 5 times
5 queries to oracle per iteration
10 iterations overall
2 populations sizes: 20 and 100
50 generations between iterations

Two real-world and three synthetic datasets
Single thread of a server (JDK1.7, Ubuntu 10.0.4, AMD Opteron 2GHz, 2GB/Experiment)
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Coala Evaluation

Parameters for WD

Ran experiments on DBLP-ACM
Population = 20
r œ {2, 4, 8, 16, 32}
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Coala Evaluation

Parameters for CL

Ran experiments on DBLP-ACM
Population = 20
ec œ {1, 2, 3, 4, 5}
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Coala Evaluation

F-Scores

Population = 100, final values
Better results, yet unclear when to use WD or CL

DataSet EAGLE WD CL
Abt 0.19±0.04 0.25±0.04 0.23±0.04
DBLP 0.91±0.03 0.96±0.01 0.96±0.02
Person1 0.86±0.02 0.89±0.01 0.81±0.18
Person2 0.74±0.03 0.71±0.08 0.77±0.03
Restaurant 0.89±0.0 0.86±0.02 0.89±0.0
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Wombat
Motivation

Need for automatic LD for evolving datasets
Mostly positive examples on the Web of Data
Negative examples rarely to be found
Missing links cannot be regarded as negative examples (Open World Assumption)

amazon:punchSW

punch! master landscape & home design

master landscape & home design offers nine

programs on one easy-to-use interface ...

:Amazon

59.99

punch! software

a

:price

:title

:description

:manufacturer

google:punchSW

punch software 26100 punch! master

landscape and home design (small box)

punch! master landscape & home design offers

an extensive plantings database deck ...

:GoogleProduct

48.95

punch software

a

:price

:name

:description

:manufacturer

owl:sameAs
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Wombat
Idea

I. Learning
atomic LS

II.Combining
atomic LS
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Wombat
Algorithm: I. Learning Atomic Link Specifications (LS)

I. Learning
atomic LS

II.Combining
atomic LS

Goal: Derive a set of initial atomic LS
1 Compute the subset of properties with su�cient coverage
2 Return as many mappings as property pairs with highest

possible F-measure
(trigrams(x.name, y.name), 0.50)

(levenshtein(x.desc, y.desc), 0.50)

(euclidean(x.price, y.price), 0.90)

(cosine(x.name, y.name), 0.52)
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Wombat
Algorithm : II. Combining Atomic LS

I. Learning
atomic LS

II.Combining
atomic LS

Goal: Derive a set of complex LS
1 Input: set of atomic LSs
2 Use Ù, Û, \ to append further atomic LS
3 Compute complex LS by using an approach based

on generalisation operators
4 Perform an iterative search through a solution space

based on a score function
5 Wombat uses F-measure as the score function

(trigrams(x.name, y.name), 0.50)

(levenshtein(x.desc, y.desc), 0.50)

Û

(euclidean(x.price, y.price), 0.90)

\

(cosine(x.name, y.name), 0.52)

Ù
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Wombat
Simple Operator

The simple operator (Ï)
is not a refinement operator
allows e�cient implementation
can not reach all specifications
e.g., (A1 Û A2) Ù (A3 Û A4)

Ï(L)=

;t
n

i=1
A

i

=A

ú if L=‹!t
n

i=1
LÛA

i

"
fi
!t

n

i=1
LÙA

i

"
fi
!t

n

i=1
L\A

i

"
otherwise

‹

A

ú

A

ú Û A2, F = 0.4 A

ú Û A1, F = 0.4 A

ú\A1, F = 0.8 A

ú\A2, F = 0.5A

ú Ù A2, F = 0.6A

ú Ù A1, F = 0.2

A

ú\A1 Û A1, F = 0.8 ......
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Wombat
Complete Operator

The complete operator (Â)
uses a more sophisticated
expansion strategy
allows learning arbitrarily nested
LS
is an upward complete refinement
operator
is improved using pruning

Â(L)=

Y
______]

______[

{A

i1 \A

j1 Ù···ÙA

i

m

\A

j

m

|A
i

k

,A
j

k

œA
for all 1ÆkÆm} if L=‹

{LÛA

i

\A

j

|A
i

œA,A
j

œA} if LœA

{L1}fi{LÛA

i

\A

j

|A
i

œA,A
j

œA} if L=L1\L2
{L1Ù···ÙL

i≠1ÙL

ÕÙL

i+1Ù···ÙL

n

|LÕœÂ(L
i

)}
fi{LÛA

i

\A

j

|A
i

œA,A
j

œA} if L=L1Ù···ÙL

n

(nØ2)
{L1Û···ÛL

i≠1ÛL

ÕÛL

i+1Û···ÛL

n

|LÕœÂ(L
i

)}
fi{LÛA

i

\A

j

|A
i

œA,A
j

œA} if L=L1Û···ÛL

n

(nØ2)

‹

A1 \ A2, F = 0.4 A2 \ A1, F = 0.4

A1, F = 0.5 (A1 \ A2) Û (A2 \ A1), F = 0.6
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Wombat
Pruning Procedure

Â is an upward refinement operator
The set of links generated by a child node is a superset of or equal to the set of links generated by its
parent

r

max

is bounded by the most general constructable LS
p

max

is bounded as false positives cannot disappear during generalisation
F

max

= 2p

max

r

max

p

max

+r

max

Prune all nodes in the search tree with F

max

< F

best

‹

F

max

= 0.5 F

max

= 0.4 F

max

= 0.8F

max

= 0.8F

max

= 0.2

F

max

= 0.5F

max

= 0.5 F

max

= 0.4F

max

= 0.2
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Wombat
Pruning Procedure

Â is an upward refinement operator
The set of links generated by a child node is a superset of or equal to the set of links generated by its
parent

r

max

is bounded by the most general constructable LS
p

max

is bounded as false positives cannot disappear during generalisation
F

max

= 2p

max
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Prune all nodes in the search tree with F
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Wombat
Evaluation Setup

8 benchmark datasets (5 real-world, 3 synthetic)
2.80 GHz PC running OpenJDK 64-Bit Server 1.7.0_75
on Ubuntu 14.04.2 LTS
7 GB RAM
Wombat

Similarity measures: jaccard, trigrams, cosine and
qgrams

Termination: F = 1 or max number of refinement tree
depth of 10
Properties coverage threshold = 0.6
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Wombat
Evaluation: 10-Fold Cross Validation F-Measure

Dataset Wombat Wombat Euclid Euclid Euclid EagleSimple Complete Linear Conjunction Disjunction
Person 1 1.00 1.00 0.64 0.97 1.00 0.99 ± 0.004
Person 2 1.00 0.99 0.22 0.78 0.96 0.94 ± 0.032
Restaurants 0.98 0.97 0.97 0.97 0.97 0.97 ± 0.024
DBLP-ACM 0.97 0.98 0.98 0.98 0.98 0.98 ± 0.007
Abt-Buy 0.60 0.61 0.06 0.06 0.52 0.65 ± 0.025
Amazon-GP 0.70 0.67 0.59 0.71 0.73 0.71 ± 0.033
DBP-LMDB 0.99 1.00 0.99 0.99 0.99 0.99 ± 0.004
DBLP-GS 0.94 0.94 0.90 0.91 0.91 0.93 ± 0.006
Average 0.90 0.90 0.67 0.80 0.88 0.90 ± 0.017
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Wombat
Evaluation: Amazon – Google Products Dataset

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fraction of the gold standard used for training

103

104

105

106

Le
ar

ni
ng

 ti
m

e 
in

 m
s 

(lo
g 

sc
al

e)

0

0.1

0.2

0.3

0.4

0.5

F-
M

ea
su

re

WOMBAT simple F-Measure
WOMBAT complete F-Measure
WOMBAT simple Learning Time
WOMBAT complete Learning Time
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Wombat
Evaluation: Pruning Procedure

Dataset 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Person 1 1.57 2.13 1.85 2.13 2.13 2.13 2.13 2.13 2.13 2.13
Person 2 1.29 1.29 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57
Restaurant 1.17 1.45 1.17 1.45 1.45 1.45 1.45 1.45 1.45 1.45
DBLP-ACM 6.23 5.58 6.79 6.85 6.85 6.85 6.79 6.79 6.93 6.79
Abt-Buy 3.38 3.00 3.00 3.39 3.39 3.39 1.79 3.39 3.39 3.39
Amazon-GP 1.14 1.38 1.33 1.37 1.38 1.45 1.54 1.59 1.60 1.60
DBP-LMDB 1.00 1.86 2.86 1.86 1.86 2.33 2.36 2.36 2.36 2.36
DBLP-GS 1.79 1.93 2.01 2.36 2.45 1.66 2.44 2.26 1.97 2.05

Pruning factor: number of searched nodes (search tree size + pruned nodes)
Max. size of the search tree (2000 nodes in this set of experiments)
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Wombat
Evaluation: Training with only 2%

Dataset Pessimistic Re-weighted Simple Complete
Persons 1 1.00 1.00 1.00 1.00
Persons 2 0.97 1.00 0.80 0.84
Restaurants 0.95 0.94 0.98 0.88
DBLP-ACM 0.93 0.95 0.94 0.94
Amazon-GP 0.39 0.43 0.53 0.45
Abt-Buy 0.36 0.37 0.37 0.36
Average 0.77 0.78 0.77 0.74
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Wombat
Conclusion & Future Work

Conclusion
Presented Wombat, the first approach to learn LS from positive
examples
Wombat is based on generalisation over the space of LS
Presented 2 operators to achieve this goal
Evaluated Wombat against SOTA
Wombat outperforms SOTA by 11% on average

Future work
Parallelize Wombat
Try more aggressive pruning techniques for better scalability
Apply active learning strategies
Unsupervised Wombat
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Summary and Conclusion

Large number of challenges to learning
accurate specifications

1 Reduce labeling e�ort
∆ Active learning

2 Learn complex specifications
∆ Genetic programming

3 Learn specifications e�cienty
∆ See previous slides

Challenges include
1 Determinism
2 Deep learning
3 Self-checking
4 . . .
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The Questions(s)

Instance matching research has led to the development of various systems.

What are the problems that I wish to solve?
What are the relevant key performance
indicators?
What is the behavior of the existing engines
w.r.t. the key performance indicators?

Which are the tool(s) that I should use for my data and for my use
case?
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Importance of Benchmarking

Benchmarks exist
To allow adequate measurements of systems
To provide evaluation of engines for real (or close to real) use cases

Provide help
Designers and Developers to assess the performance of their tools
Users to compare the di�erent available tools and evaluate suitability for their needs
Researchers to compare their work to others

Leads to improvements:
Vendors can improve their technology
Researchers can address new challenges
Current benchmark design can be improved to cover new necessities and application domains
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The Answer
Benchmark your engines!

Instance Matching Benchmark comprises of
Datasets: The raw material of the benchmarks. These are the source and the target dataset that
will be matched together to find the links

Test Cases: Address heterogeneities (structural, value, semantic) of the datasets to be matched

Gold Standard (Ground Truth / Reference Alignment): The "correct answer sheet" used to
judge the completeness and soundness of the instance matching algorithms

Metrics: The performance metric(s) that determine the systems behaviour and performance
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Benchmark Datasets
Characteristics

Nature
Real Datasets: Widely used datasets from a domain of interest

Realistic conditions for heterogeneity problems
Realistic distributions
Error prone, hard to create Reference Alignment

Synthetic Datasets: Produced with a data generator (that hopefully produces data with interesting

characteristics

Fully controlled test conditions
Accurate, Easy to create Reference Alignments
Unrealistic distributions
Systematic heterogeneity problems

Schema
Datasets to be matched have the same or di�erent schemas

Domain
Datasets come from the same or di�erent domains
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Benchmark Test Cases
Variations

Value
Name style abbreviations, Typographical errors, change format (date/gender/number), synonym

change, language change (multilinguality)

Structural
Change property depth, Delete/add property, split property values, transformation of object/data to

data/object type property

Semantics
class deletion/modification, invert property assertions, change class/property hierarchy, assert class

disjointness

Combinations of Variations
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Gold Standard

The "correct answer sheet" used to judge the completeness and soundness of the instance
matching algorithms

Characteristics
Existence of errors / missing alignments

Representation: owl:sameAs and skos:exactMatch
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Metrics
Precision P = tp

(tp+fn)
Recall R = tp

(tp+fp)
F-measure F = 2 ◊ P ◊ R

(P+R)
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Instance Matching Benchmarks
Desirable Attributes

Systematic Procedure matching tasks should be reproducible and the execution must
be comparable

Availability benchmark should be available
Quality precise evaluation rules and high quality ontologies must be pro-

vided
Equity evaluation process should not privilege any system
Dissemination benchmark should be used to evaluate instance matching systems
Volume dataset size
Gold Standard gold standard should exist and be as accurate as possible
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What about Benchmarks?

Instance matching techniques have, until recently, been benchmarked in an
ad-hoc way.

There is no standard way of benchmarking the performance of the systems,
when it comes to Linked Data.
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OAEI

IM benchmarks have been mainly driven forward by the Ontology Alignment Evaluation
Initiative (OAEI)

organizes annual campaign for ontology matching since 2005

hosts independent benchmarks

In 2009, OAEI introduced the Instance Matching (IM) Track
focuses on the evaluation of di�erent instance matching techniques and tools for Linked Data
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Instance Matching Benchmarks

Bechmark Generators
Synthetic Benchmarks
Real Benchmarks
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SWING [FMN+11]

Semi automatic generator of Instance Matching Benchmarks

Contributed in the generation of IIMB Benchmarks of OAEI in 2010, 2011 and 2012 Instance
Matching Tracks
Freely available at (https://code.google.com/p/swing-generator/)

All kind of variations supported into the benchmarks except multilinguality
Automatically produced gold standard
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Lance [SDF+15b]

Flexible, generic and domain-independent benchmark generator which takes into consideration
RDFS and OWL constructs in order to evaluate instance matching systems.
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Lance [SDF+15b]

Lance provides support for:
Semantics-aware transformations

Complex class definitions (union, intersection)

Complex property definitions (functional properties, inverse functional properties)

Disjointness (properties)

Standard value and structure based transformations
Weighted gold standard based on tensor factorization
Varying degrees of di�culty and fine-grained evaluation metrics

Available at http://github.com/jsaveta/Lance
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Lance Architecture
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Synthetic Benchmarks

Ontology Alignment Evaluation Benchmarks
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Synthetic IM Benchmarks
Overview (1)

IIMB
2009

IIMB
2010

PR 2010 IIMB
2011

Sandbox
2012

IIMB
2012

RDFT
2013

ID-REC
2014

Author
Task
2015

Systematic Procedure Ô Ô Ô Ô Ô Ô Ô Ô Ô

Availability Ô Ô Ô Ô Ô - - Ô Ô

Quality Ô Ô Ô Ô Ô Ô Ô Ô Ô

Equity Ô Ô Ô Ô Ô Ô Ô Ô Ô

Dissemination 6 3 6 1 3 4 4 5 5
Volume 0.2K 1.4K 0.86K 4K 0.375K 1.5K 0.43K 2.650K 10K

Gold Standard Ô Ô Ô Ô Ô Ô Ô Ô Ô
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Synthetic IM Benchmarks
Overview (2)

IIMB
2009

IIMB
2010

PR 2010 IIMB
2011

Sandbox
2012

IIMB
2012

RDFT
2013

ID-REC
2014

Author
Task
2015

Value Variations Ô Ô Ô Ô Ô Ô Ô Ô Ô

Structural Variations Ô Ô Ô Ô - - - + +
Logical Variations Ô Ô - Ô - Ô - - -
Multilinguality - - - - - - Ô Ô Ô

IIMB
2009

IIMB
2010

PR 2010 IIMB
2011

Sandbox
2012

IIMB
2012

RDFT
2013

ID-REC
2014

Author
Task
2015

Blind Evaluations - - - - - - Ô Ô Ô

1-n Mappings - - Ô - - - Ô Ô -
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Synthetic IM Benchmarks
Overview (3)

IIMB
2009

IIMB
2010

PR
2010

IIMB
2011

Sandbox
2012

IIMB
2012

RDFT
2013

ID-REC
2014

Author
Task
2015

Lance
2015

Systematic
Procedure

Ô Ô Ô Ô Ô Ô Ô Ô Ô Ô

Availability Ô Ô Ô Ô Ô - - Ô Ô Ô

Quality Ô Ô Ô Ô Ô Ô Ô Ô Ô Ô

Equity Ô Ô Ô Ô Ô Ô Ô Ô Ô Ô

Dissemination 6 3 6 1 3 4 4 5 5 2

Volume 0.2K 1.4K 0.86K 4K 0.375K 1.5K 0.43K 2.650K 10K > 1M

Gold
Standard

Ô Ô Ô Ô Ô Ô Ô Ô Ô Ô
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Synthetic IM Benchmarks
Overview (4)

IIMB
2009

IIMB
2010

PR
2010

IIMB
2011

Sandbox
2012

IIMB
2012

RDFT
2013

ID-REC
2014

Author
Task
2015

Lance
2015

Value
Variations

Ô Ô Ô Ô Ô Ô Ô Ô Ô Ô

Structural
Variations

Ô Ô Ô Ô - - - + + +

Logical
Variations

Ô Ô - Ô - Ô - - - +

Multilinguality - - - - - - Ô Ô Ô Ô
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Synthetic IM Benchmarks
Overview (5)

IIMB
2009

IIMB
2010

PR 2010 IIMB
2011

Sandbox
2012

IIMB
2012

RDFT
2013

ID-REC
2014

Author
Task
2015

Lance
2015

Blind
Evaluations - - - - - - Ô Ô Ô Ô

1-n
Mappings - - Ô - - - Ô Ô - -
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Real Benchmarks
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Real IM Benchmarks
Overview (1)

ARS DI 2010 DI 2011

Systematic Procedure Ô Ô Ô

Availability Ô Ô -

Quality Ô Ô Ô

Equity Ô Ô Ô

Dissemination 5 2 3

Volume 100K 6K NA

Gold Standard Ô Ô +
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Real IM Benchmarks
Overview (2)

ARS DI 2010 DI 2011

Value Variations Ô Ô Ô

Structural Variations Ô Ô -

Logical Variations - - -

Multilinguality - - -

Blind Evaluations - - -
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Wrapping Up

Multilinguality
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Wrapping Up

Value Variations
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Wrapping Up

Structural Variations
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Wrapping Up

Logical Variations
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Wrapping Up

Combinations of Variations
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Wrapping Up

Scalability
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Wrapping Up

Scalability & Expressiveness
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Open Issues

Only one benchmark that tackles both, combination of variations and scalability issues
Not enough IM benchmark using the full expressiveness of RDF/OWL language
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Systems

Systems can handle the value variations, the structural variation, and the simple logical variations
separately.
More work needed for complex variations (combination of value, structural, and logical)
More work needed for structural variations
Enhancement of systems to cope with the clustering of the mappings (1-n mappings)
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Conclusions

Many instance matching benchmarks have been proposed
Each of them answering to some of the needs of instance matching systems.
It is essential to start creating benchmarks that will “show the way to the future”
Extend the limits of existing systems.
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Test Dataset

Semantic Web Dog Food Corpus
Data exposed: Metadata (papers, presentations, people) for several semantic web related conferences
and workshops, including the most recent ISWC, ESWC and WWW events.

Dumps: http://data.semanticweb.org/dumps
Endpoint: http://data.semanticweb.org/sparql
DataHub: https://datahub.io/dataset/semantic-web-dog-food
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Task I: Deduplication

Execute the given Configuration File

Decentralized nature of LOD
Data contain duplicates
How to e�ciently detect similar resources?

Example
Find duplicate authors in Semantic Web Dog Food Corpus?
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Limes Configuration File

PREFIXes

<PREFIX >
<NAMESPACE >http :// www.w3.org /2000/01/ rdf - schema #</ NAMESPACE >
<LABEL >rdfs </ LABEL >

</ PREFIX >
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Limes Configuration File

SOURCE and TARGET datasets

<SOURCE >
<ID >SDF1 </ID >
<ENDPOINT >semanticDogFood .nt </ ENDPOINT >
<VAR >?x</VAR >
<PAGESIZE > -1</ PAGESIZE >
<RESTRICTION >?x a foaf: Person </ RESTRICTION >
<PROPERTY >rdfs: label </ PROPERTY >
<TYPE >NT </TYPE >

</ SOURCE >
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Limes Configuration File

METRIC

<METRIC >Levenshtein (x.rdfs: label , y.rdfs: label )</ METRIC >
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Limes Configuration File

ACCEPTANCE and REVIEW

<ACCEPTANCE >
<THRESHOLD >0.9 </ THRESHOLD >
<FILE >similarAuthor .nt </FILE >
<RELATION >ov: similarTo </ RELATION >

</ ACCEPTANCE >

<REVIEW >
<THRESHOLD >0.5 </ THRESHOLD >
<FILE >similarAuthor_review .nt </FILE >
<RELATION >owl: sameAs </ RELATION >

</ REVIEW >
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Limes Configuration File

OUTPUT format

<OUTPUT >TTL </ OUTPUT >
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Task I

Run Limes

Run Limes
java -jar limes-core-1.0.0.jar task1.xml
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Task I

Using Machine Learning

<MLALGORITHM >
<NAME >wombat simple </NAME >
<TYPE >unsupervised </TYPE >

</ MLALGORITHM >
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Task II

Find similar publications

1 Find publications
with similar keyword,

but do not link any publication to itself

1. Find publications
?x a swrc:InProceedings

?y a swrc:InProceedings

2. with similar keyword, but do not link any publication to itself
MINUS(jaccard(x.swrc:listKeyword , y.swrc:listKeyword)|0.3,

ExactMatch(x.swrc:listKeyword , y.swrc:listKeyword)|1.0)
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Task III

Use Limes GUI

Run Limes GUI
java -jar limes-core-1.0.0.jar -g
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